Search results for " Magnetic Anisotropy"

showing 10 items of 16 documents

Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy

2019

We study the influence of He+ irradiation induced interface intermixing on magnetic domain wall (DW) dynamics in W-CoFeB (0.6 nm)-MgO ultrathin films, which exhibit high perpendicular magnetic anisotropy and large Dzyaloshinskii-Moriya interaction (DMI) values. Whereas the pristine films exhibit strong DW pinning, we observe a large increase in the DW velocity in the creep regime upon He+ irradiation, which is attributed to the reduction of pinning centers induced by interface intermixing. Asymmetric in-plane field-driven domain expansion experiments show that the DMI value is slightly reduced upon irradiation, and a direct relationship between DMI and interface anisotropy is demonstrated. …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)SpintronicsMagnetic domainCondensed matter physics530 PhysicsPerpendicular magnetic anisotropy02 engineering and technology530 Physik021001 nanoscience & nanotechnology01 natural sciences[SPI]Engineering Sciences [physics]Domain wall (magnetism)Creep[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesPerpendicular anisotropyIrradiation[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyAnisotropyComputingMilieux_MISCELLANEOUS
researchProduct

A computational study of some electric and magnetic properties of gaseous BF3 and BCl3

2005

We present the results of an extended computational study of the electric and magnetic properties connected to Cotton-Mouton birefringences, on the trifluoro- and trichloroborides in the gas phase. The electric dipole polarizabilities, magnetizabilities, quadrupole moments, and higher-order hypersusceptibilities—expressed as quadratic and cubic frequency-dependent response functions—are computed within Hartree-Fock, density-functional, and coupled-cluster response theories employing singly and doubly augmented correlation-consistent basis sets and London orbitals in the magnetic property calculations. The results, which illustrate the capability of time-dependent density-functional theory f…

BirefringenceBirefringenceCondensed matter physicsChemistryElectron correlationsGeneral Physics and AstronomyMagnetic susceptibilityBoron compounds; Polarisability Quadrupole moments ; HF calculations ; Density functional theory ; Coupled cluster calculations ; Electron correlations ; Magnetic anisotropy ; Magnetic susceptibility ; BirefringenceUNESCO::FÍSICA::Química físicaMagnetic susceptibilityMagnetic anisotropyDipoleAtomic orbitalBoron compoundsCoupled cluster calculationsQuadrupolePolarisability Quadrupole momentsDensity functional theoryDensity functional theoryPhysical and Theoretical ChemistryAtomic physicsAnisotropy:FÍSICA::Química física [UNESCO]HF calculationsMagnetic anisotropy
researchProduct

Magnetic exchange interaction in a pair of orbitally degenerate ions: Magnetic anisotropy of [Ti2Cl9]−3

2001

The theory of the kinetic exchange in a pair of orbitally degenerate ions developed by the authors [J. Phys. Chem. A 102, 200 (1998)] is applied to the case of face-shared bioctahedral dimer (overall D3h-symmetry). The effective kinetic exchange Hamiltonian is found for a 2T2–2T2 system taking into account all relevant transfer pathways and charge-transfer crystal field states. The influence of different transfer integrals involved in the kinetic exchange on the energy pattern and magnetic properties of the system is examined. The role of other related interactions (trigonal crystal field, spin–orbit coupling) is also discussed in detail. Using the pseudoangular momentum representation and …

Condensed matter physicsChemistryDegenerate energy levelsGeneral Physics and AstronomyTrigonal crystal systemKinetic energyNegative ionsExchange interactions (electron)Magnetic exchangeIonUNESCO::FÍSICA::Química físicaMagnetic anisotropysymbols.namesakeTitanium compounds ; Magnetic anisotropy ; Negative ions ; Exchange interactions (electron)Quantum mechanicssymbolsTitanium compoundsPhysical and Theoretical Chemistry:FÍSICA::Química física [UNESCO]Hamiltonian (quantum mechanics)Magnetic anisotropy
researchProduct

A field induced ferromagnetic-like transition below 2.8 K in Li2CuO2: An experimental and theoretical study

1998

The low temperature magnetic properties of the Li2CuO2 compound have been investigated by means of superconducting quantum interference device magnetometry. We find in addition to an antiferromagnetic phase below 9.5 K a ferromagnetic-like steep rise of the magnetization around 2.8 K. The observed low temperature behavior is discussed by considering second and fourth order magnetocrystalline effective anisotropy coefficients, in addition to the exchange couplings reported in the literature. Work at the Institut de Ciencia dels Materials was supported by the Spanish Comisión Interministerial de Ciencia y Technología Grant No. CICYT MAT 96-1037.

Field (physics)MagnetometerExchange InteractionsGeneral Physics and AstronomyExchange Interactions (Electron)Magnetizationlaw.inventionMagnetizationMagnetisationAntiferromagnetism:FÍSICA [UNESCO]lawPhase (matter)Magnetic propertiesFerromagnetic MaterialsCopper OxidesLi2CuO2AntiferromagnetismAntiferromagnetic MaterialsLithium OxidesAnisotropyCondensed matter physicsTemperature Range 0000-0013 KChemistryTemperature DependenceUNESCO::FÍSICALithium Compounds ; Ferromagnetic-Antiferromagnetic Transitions ; Ferromagnetic Materials ; Antiferromagnetic Materials ; Magnetisation ; Magnetic Anisotropy ; Exchange Interactions (Electron) ; Lithium Oxides ; Copper Oxides ; Magnetization ; Exchange Interactions ; Antiferromagnetism ; Ferromagnetism ; Temperature Dependence ; Temperature Range 0000-0013 KMagnetic AnisotropyMagnetic anisotropyFerromagnetismLithium CompoundsFerromagnetismFerromagnetic-Antiferromagnetic TransitionsJournal of Applied Physics
researchProduct

Lateral Electric‐Field‐Controlled Perpendicular Magnetic Anisotropy and Current‐Induced Magnetization Switching in Multiferroic Heterostructures

2020

MagnetizationMaterials scienceCondensed matter physicsPerpendicular magnetic anisotropyElectric fieldMultiferroicsHeterojunctionCurrent (fluid)Spin orbit torqueElectronic Optical and Magnetic MaterialsAdvanced Electronic Materials
researchProduct

Strain-controlled domain wall injection into nanowires for sensor applications

2021

We investigate experimentally the effects of externally applied strain on the injection of 180$^\circ$ domain walls (DW) from a nucleation pad into magnetic nanowires, as typically used for DW-based sensors. In our study the strain, generated by substrate bending, induces in the material a uniaxial anisotropy due to magnetoelastic coupling. To compare the strain effects, $Co_{40}Fe_{40}B_{20}$, $Ni$ and $Ni_{82}Fe_{18}$ samples with in-plane magnetization and different magnetoelastic coupling are deposited. In these samples, we measure the magnetic field required for the injection of a DW, by imaging differential contrast in a magneto-optical Kerr microscope. We find that strain increases t…

Materials scienceCondensed matter physics530 PhysicsNanowireNucleationGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyPhysics - Applied PhysicsApplied Physics (physics.app-ph)Coercivity021001 nanoscience & nanotechnology530 Physik01 natural sciencesMagnetic fieldMagnetizationMagnetic anisotropyCondensed Matter::Materials ScienceDomain wall (magnetism)Materials properties Magnetic hysteresis Ferromagnetic materials Magnetic anisotropy Magnetic devices Sensors Nanowires Magnetic ordering Magnetic materials0103 physical sciences010306 general physics0210 nano-technologyAnisotropy
researchProduct

Magnetic Skyrmions: Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures (Adv. Mate…

2018

Materials scienceCondensed matter physicsMagnetic domainPerpendicular magnetic anisotropyMechanical EngineeringSkyrmionHeterojunction02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesFerromagnetismMechanics of MaterialsThermalGeneral Materials ScienceCurrent (fluid)0210 nano-technologyAdvanced Materials
researchProduct

Role of top and bottom interfaces of a Pt/Co/AlOx system in Dzyaloshinskii-Moriya interaction, interface perpendicular magnetic anisotropy, and magne…

2017

We investigate the role of top and bottom interfaces in inversion symmetry-breaking Pt/Co/AlOx systems by inserting ultra-thin Cu layers. Wedge-type ultrathin Cu layers (0-0.5 nm) are introduced between Pt/Co or Co/AlOx interfaces. Interface sensitive physical quantities such as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) energy density, the interfacial perpendicular magnetic anisotropy (iPMA), and the magneto-optical Kerr effects (MOKE) are systematically measured as a function of Cu-insertion layer thickness. We find that the Cu-insertion layer in the bottom interface (Pt/Co) plays a more important role in iDMI, PMA, and MOKE. In contrast, the top interface (Co/AlOx) noticeab…

Materials scienceCondensed matter physicsPerpendicular magnetic anisotropyGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLayer thicknessCopperlcsh:QC1-999chemistryMagneto-optic Kerr effect0103 physical sciencesEnergy densityInteraction interface010306 general physics0210 nano-technologyPlatinumCobaltlcsh:Physics
researchProduct

Spin Logical and Memory Device Based on the Nonvolatile Ferroelectric Control of the Perpendicular Magnetic Anisotropy in PbZr 0.2 Ti 0.8 O 3 /Co/Pt …

2020

Materials scienceCondensed matter physicsPerpendicular magnetic anisotropyLogical conjunctionHeterojunctionFerroelectricityElectronic Optical and Magnetic MaterialsSpin-½Advanced Electronic Materials
researchProduct

Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.

2018

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Magnetic skyrmions promise breakthroughs in future memory and computing devices due to their inherent stability and small size. Their creation and current driven motion have been recently observed at room temperature, but the key mechanisms of their formation are not yet well-understood. Here it is shown that in heavy metal/ferromagnet heterostructures, pulsed currents can drive morphological transitions between labyrinth-like, stripe-like, and skyrmionic states. Using high-resolution X-ray microscopy, the spin texture evolution with temperature and magnetic field is imaged and it is demonstrated that with transient Joule heating, topologica…

Materials scienceMagnetic domainskyrmionsmultilayersperpendicular magnetic anisotropyDzyaloshinkii-Moriya interaction02 engineering and technologymagnetic domains01 natural sciencesEngineering0103 physical sciencesddc:530General Materials ScienceNanoscience & Nanotechnology010306 general physicsSpin-½Magnetization dynamicsCondensed matter physicsTexture (cosmology)Mechanical EngineeringSkyrmion021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic fieldFerromagnetismMechanics of MaterialsPhysical SciencesChemical Sciences0210 nano-technologyJoule heating
researchProduct